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The class of two-dimensional scalar supersymmetric models with non-derivative 
self-interactions is investigated in the context of searching for higher local quantum 
conservation laws. Using Zimmermann's normal product algorithm in the explicitly 
supersymmetric formulation, it is shown (at least for weak coupling) that the 
supersymmetric sine-Gordon model is the only completely integrable model in the 
above class. The whole infinite set of higher local conserved quantum currents of the 
latter is constructed. The value/~z= 4~r of the supersymmetric sine-Gordon coupling 
constant is shown to be critical in a sense analogous to the case B]G = 8~r in the usual 
sine-Gordon model. 

1. Introduction 

In the last few years two-dimensional completely integrable field-theory models 
came under extremely intensive investigation (for a review see, e.g., [1]). The 
interest in them is mainly due to their exact solvability (spectra and S-matrices) as 
well as to the deep analogy between some of the most interesting among them 
(non-linear sigma model [2], CP N chiral field models [3]) and the realistic four- 
dimensional gauge theories. In order to include interactions with fermions naturally, 
supersymmetric generalizations of the sine-Gordon (SG) [4, 4a], non-linear sigma 
[4, 5] and CP N chiral field models [6] were proposed. On the other hand the 
supersymmetric sine-Gordon (SSG) model turns out to be equivalent on the quan- 
tum level to the N = 3 Gross-Neveu model [7]. In ref. [8] the exact quantum S- 
matrices of the SSG (without the kinks) and O(N) non-linear sigma models were 
found following the general methods developed in [9]. 

The main ingredient of the exact solvability of two-dimensional completely 
integrable models is the existence of infinite sets of higher local quantum conserved 
currents (HLQCC) which imply non-trivial restrictions on the dynamics: absence of 
multiparticle production and factorization [10, 11] of all scattering processes. In 
particular, from the first non-trivial HLQCC the so-called factorization equations 
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for two-particle amplitudes follow which lead to the exact determination of the 
latter [9]. 

However, the local field algebra in arbitrary quantum field models (in the 
present context understood as the formal algebra of Zimmermann's normal 
products of composite operators [12]) acquires a new structure in comparison with 
the corresponding classical one. Namely, due to non-multiplicative renormalizations 
of composite local operators, quantum equations of motion (QEM) do not in 
general resemble the analogous classical ones (quantum "anomalies") and therefore 
the powerful formalism of the inverse scattering method in classical relativistic 
completely integrable models [13, 1, 2] cannot be applied directly on the quantum 
level*. Thus proper construction of HLQCCs appears as a first important step to 
the exact solution. 

In refs. [15, 16] one possible approach for finding HLQCCs based on the BPHZ 
normal product formalism [12, 17] was proposed in the case of the SG and massive 
Thirring models (cf. also [18, 19]. It was further applied for explicit construction of 
the first two HLQCCs in the quantum O(N) non-linear sigma model [20]. This 
approach is essentially algebraic, relying only on proper QEM [17] and Zim- 
mermann identities (ZIs) for normal products [12] and using two main features: the 
structure of the renormalization scheme for composite operators and Lorentz 
structure, symmetries and (canonical) dimensions of the latter. 

In the present article our aim is to find HLQCCs for theories in the class of 
two-dimensional scalar supersymmetric models with non-derivative self-couplings. 
In sect. 2, making use of supersymmetric normal product formalism (cf. [21]), it is 
shown (at least in the weak coupling regime) that the SSG model is the only one in 
the class described above, having a first HLQCC (besides the usual spin-vector 
supercurrent). More exactly, the most general formal solution to this problem is the 
double SSG model with a special relation between the two coupling constants 
fl2/~2 = const > (4rr) 2 [see (27), (28)]. However, it turns out that in the SSG model 
the value f12= 47r of the coupling constant is a critical one, in the sense that at that 
point the theory becomes formally scale invariant and the cosine-perturbation 
renders it strictly (not super-) renormalizable (see sect. 3). This phenomenon has its 
counterpart in the usual SG model for fl~G = 8~r [22, 23] (moreover, non-leading 
short-distance singularities for/32o/> 47r appear there [24] which invalidate con- 
ventionally renormalized perturbation theory). On the grounds of these facts, it is 
argued that the latter, more general, formal solution might not be correct. In sect. 4 
adapting arguments of ref. [19] the whole infinite series of HLQCCs of the SSG 

* Let us mention however, that recently a new, very interesting approach [14] to the exact 
solution of quantum completely integrable models appeared which is a non-trivial quantum 
analogue of the inverse scattering method. 
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model is constructed*. This provides complete dynamical justification of the pro- 
posed exact quantum S-matrix of the model [8]*.* 

2. Supersymmetric normal product formalism and HLQCCs 

2.1. Preliminaries and notation 

We shall use the standard notions of the superspace approach to supersymmetry 
[28] appropriately accomodated to the case of two-dimensional space-time. The 
general form of a scalar superfield reads 

O(x, 0) = ¢(x) + iOn(x) +lioOF(x), 

~ = C_i~#0~, C_~=( 0 1) 
- 1  0 '  (1) 

where ~0(x), F(x) are (pseudo) scalar fields (even elements of a Grassmann algebra), 
$~(x), O ~ are two-component Majorana spinors (odd elements of a Grassmann 
algebra). We choose the following particular representation for the Dirac matrices: 

10) ,1(°1 

Light-cone coordinates and light-cone components of Lorentz vectors (and tensors) 
are defined as follows: 

~=½(x°+x'), '7 =½(x°-x~), 

A~=Ao+A1, An = A o - A I ,  

A~B ~ = ½(AeBn + A~B~), etc. 
The supersymmetric covariant derivative 9 = O/O#-i(aO) has components of the 
form 

9 1  = O02 -- iO20n, 9 2  = - a o  1 - iO 10 e , 

91..~11 = --  ion, 9 2 9 2  = iae, 

9 2 9 1  = - - 9 1 ~ 2  = --OOaC~O z -- iOZaolOn - iOl Ooa~# + 0 2 0 1 O ~ b n  . (2) 

* The infinite set of classical conserved currents in the SSG model was found in [25] and 
subsequently the corresponding supersymmetric inverse scattering problem [26, 26a] and the 
associated Backlund transformation [26a] were presented. 

** The first non-trivial HLQCC of the supersymmetric O(N) non-linear sigma model was 
recently constructed in [27] by means of a supersymmetric extension of the method of ref. 
[20]. 
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Grassmann differentiation and integration are introduced according to the rules in 
ref. [29]: 

@.(AB) = (~,A)B ± A(~.B), 

fdo°=-o o, fd20=-fdO d02--oo,oo , 
(3a)  

I d28f(O+O')=f dzOf(O), 

(3b) 

where the minus sign in (3a) holds when A is an odd element. The Grassmann 

I d20 6 ( 0 -  0') = 1, 

delta-function has the properties [30] 

6(0 - 0') = ( 0 2 -  0 '2) (01  - 0'1),  

~ ( o - o')f(  o) = ~( o - o')f(  o'). (4) 

The Lorentz weights w of the various objects introduced so far are as follows (i.e., 
the latter transform under the proper two-dimensional Lorentz group by multi- 
plicative factors exp (wx), x-rapidity): 

w(a,) = 1, w(a~) =--1 ,  W(~I) = W(002 ) = W(01) = W(///1)= ½, 

w(~2) = w(aol)= w(O 2) = w(t02)- -½. (5) 

The langrangian of the SSG model and the corresponding classical equations of 
motion read 

(6)  

(7) 

(6') 

~ssG(X, 0) = 1@25~1¢ - (m//32) cos/3¢ ; 

~2~1~ = (m/~) sin/3¢, 

or equivalently in components (1) 
1 ,~SSG(X) = ~a~pcqn~o + li@lt)#l//1 _ ~l~lzO,l@21. _ ~F1 2 

- m~1~2 cos ~tp + ~ F  sin/3~, 

0e0nq~ = m/~l  ,4]2 sin/3c¢ + imF cos/3~0, F = im sin B~o, 
fl 

i0~01 = mOz cos/3~0, ianO2 = m01 cos/3¢. 
(7') 

2.2. Invariant perturbation theory and BPHZ renormalization 

From here to the end of this section we shall consider more general scalar 
supersymmetric models with non-derivative self-couplings: 

~(x,  0) = ½@2¢~a¢ + ½me z + ~fi(¢) • (8) 
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Graphical elements of supersymmetric perturbation theory [28, 30] are vertices 
determined by ~i(O) and propagators: 

D(p; 0, O') = e ~°°'(1 - m6(O - 0'))[m 2 _p2_ i0]-1. (9) 

Besides the usual integration over independent internal loop momenta one asso- 
ciates to each internal vertex an integration over the corresponding 0 [30]. 

Ultraviolet (UV) power counting is an important ingredient in the BPHZ 
renormalization scheme. In the present supersymmetric context one assigns to the 
Grassmann elements the following UV dimensions: 

dim 0 ~ - -½, dim i0o ~)= dim ~ = ~, a = 1, 2.  (10) 

Thus the general formula for the canonical UV degree w(F) of an arbitrary super- 
graph F of the theory (8) reads IV(F) is the number of vertices in F]: 

w(F) = 2(1-V(F)).  (11) 

When one extra composite operator P vertex insertion is present (this is the only 
relevant case we shall need below), eq. (11) is modified to: 

~o (F) = dim P - 2 V(F). (11') 

In order to assure minimal UV subtractions we shall employ the trick of partially 
"soft" mass [31]. Namely, the mass m in the numerator of (9) is replaced by sm, 
where s (0 ~<s ~< 1) is an auxiliary parameter. Modified subtraction operators rp~s 
are defined by the properties [21] 

, ; ' J (p ,  s) = t ; 'y(p,  s), (12) 
co a . , ~  ~o+ 1 / 2 e l  

rp, sO f(p, s; 0)= ~ %,s ftP, s; 0), 

f(p, s; 0) being an arbitrary function and tp~s the standard Taylor subtraction 
operators of order o) in the variables p, s. After implementing all subtractions in the 
corresponding Zimmermann's "forest formula" [31]: 

Rr((p), s, (k); (0), (~o)) • I] ,o(v) = ( - ro . s ) I r ( (P ) ,  s, (k); (0), (~#)) (13) 
U a ...~r - / c U  

we set s = 1. In (13) the following standard notation is used: Rr  is the renormalized 
integrand; Iv is the unrenormalized integrand of the super-graph F; o~r is the set of 
all F-forests U; 3' are subgraphs of F, elements of the U's; (p), (k), (0), (¢) are 
sets of external and internal momenta, external and internal Grassmann factors, 
respectively. By definition rp'.~ ") -= 0 when acting on one-particle reducible sub- 
graphs. 

One can easily perform the internal Grassmann integrations by means of the 
formulas [c[. (3b), (4)] 

d2~0 exp Ot~, p2 a(Ol)  + 2 2 1 pt.nPk,eOl Ok, (14) 
I 1 = l ,k=l, l~:k 
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Id2~ogo 1 { ~  01/~ } N exp l¢ = ~ Pl, nO 2, 
l 1 /=1 

f d2q~o2exp { ~  t~t/~,~#} = ~ pl.,O~, (14) 
t=l t=l (cont.) 

thus reducing Iv to a sum of contributions J~v a), each of them corresponding to a 
usual Feynman graph multiplied by external (Grassmann) factors of the form: 

I~rA'(~),s,(k);(O))=exp{ E ffa,~bOb} [I [smS(Oa,--Ob,)] 
a,b al,bl 

X FI 2 ~1 r ( A )  OcPc, n I] vapd.~r ((p), S, (k)). (15) 
c d 

Here A is a shorthand notation for the corresponding configurations of indices 
{a, b}, {ax, &}, {c}, {d}, labelling external Grassmann factors and linear combina- 
tions of external momenta. Combining (13), (15) and accounting for (12) one 
obtains 

Rr((P),s,(k);(O))=~Aexp { ~ O~fi~bOb} fI [sm6(O~l--Obl)] 
a,b al ,b 1 

XI ~ 2 ~1 n ( A )  Ocpc., I-I ~apa, et~r ((p), s, (k)), 
c d 

,OA(V) (A) R~rA~((P), s, (k)) = E F[ ( - t ~ , s ) J r  ((p), s, (k)) ; 
U¢5~r 3,eU 

+ int i + ,oA(r)=,o(r) v (r)-2(Icl Idl) 

= / 2 -  V(y) -  vext(y)-½(lc]+ld]) , 

/dim P -  V(y ) -  vex'(y)--½(Icl + Idl), 

(16a) 

(16b) 

where ]c[ + ]d[ is always even; Ic[, ]d[ denote the number of factors O~pc,n, Olapd, e, 
respectively; V(y)= vi"t(y)+ vext(y); V in'(ext) (y) is the number of internal 
(external) vertices in y. Eqs. (16) lead not only to the superrenormalizability of the 
models (8) (with the only UV divergence occurring in point-loops) but also deter- 
mine the particular structure of the relevant ZIs in the QEM [see (24) and figs. 2 
and 4 below] which is crucial for the existence of HLQCCs. 

2.3. Quantum equations of motion 

QEM for supersymmetric Green functions with composite operator vertex 
insertions can be derived by the standard BPHZ procedure [17] with the only 
exception that due to the partially "soft" mass renormalization (12) one should use 
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a modified identity for the propagator (9) in momentum space ( " ~ "  means Fourier 
transform): 

[~ ~ ~[ ~oo, l - s m  6(0-0')] +mZ(s z_ 1).m~2(_~0~20_i)i0 ~ 2 ~ l - s m J / e  ~--ff - - ~ _ / ~  ~ = 6(0-0')  (17) 

In this way we obtain ((...> denote connected time-ordered Green functions; O(@) 
is an arbitrary differential monomial in @~ ; P is an arbitrary composite operator): 

(N[P.O(~)(@2~l~b ) ](x, O)X~)= m(N[P.O(~)(b ](x, O)X6> 

+ (N[P.O(~)(6~I/6C~)](x, O)X~,>- i ~ [0(9)  6(x - xl) 6(0 - 0l)] 
/ = 1  

x (N[P](x, 0)X~)+ mZ(N[P.O(@){(s z -  1)&}](x, 0)X,~) ; 
L / ,  L a ,  

x ~  = 11 &(x~, o,), ~ -~ l-I ~(x,,, o,,). ( 1 8 )  
I = l  I ' = l , l ' ~ l  

Here the symbol N denotes the canonical (minimally subtracted) normal product, 
except in the last "anomalous" anisotropic term on the r.h.s, of eq. (18). The 
meaning of the curly brackets there is twofold. Firstly, the propagator correspond- 
ing to $ inside the brackets is not (9) but a modified one (cf. (17)): 6(0-  O')[m 2-  
p2_ i0]-~ (graphically this propagator will be represented by a marked line, see 
figs. 1--4). Secondly, one assigns to each subgraph I" containing the modified pro- 
pagator UV oversubtraction degree: 

o~(1~) = w(~') + 2 = oJ(F) + 1, o~A(r') = o~A(l~), (19) 

where F is topologically identical to F but with all propagators normal. The last two 
relations in (19) follow from the presence of 8(0-0')  in the modified propagator 
and from (4), (12). The anisotropic normal prodUcts in QEM are to be expanded in 
terms of canonical ones by means of the ZIs (see figs. 1-4). 

r . . . . . . . .  1 
I A  . I ,%. "A 
' r f ~  ,6 
I ~___~i--~__~ t I  

~- , , 
. . . .  A 

r ~ 

×® 

Fig. 1. Graphical structure of the ZI for (N [ ~ 2 5 ~ 2 { ( S 2 - - 1 ) ~ b } ] ( x ,  O)X,) (lPI--=one-particle 
irreducible). 
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f -  . . . . .  ] 

',pair: 

[ -  . . . . .  - I  

i#"fi i 

c g'Z, /~¢, 

. . . . . .  I 

(a) 
r -  . . . . . . .  7 

i ', ,,u (IIJ, 

F . . . . . .  - 1  I -  . . . . .  q 

' , , . , i ~  ',~ I DI'~ ;a ',r ~ 
, 

I I 
L 

r "  . . . . .  m . . . . . .  

,,,.,i~/=j ~ t ', ,r- I,/, , 

(6) 

Fig. 2. Complete list of supergraphs giving rise to the ZI for the r.h.s, of eq. (23). 

' -  . . . . . . .  l F . . . . . .  -I 

D E'~ ~ : J Dt*~ /q ! 

Fig. 3. Supergraphs contributing to the ZI (33). 

r . . . . . . . . . . . . .  7 

:h  [~] 

L _ _  I 

rR;~,o 
i.o .z ~,~,R{. , ~ ' "  

Fig. 4. General  graphical structure of the ZI for <N[9~l~b... 9~ c-1 { ( s 2 - 1 ) ~ } . . .  9~:=~b] × 
(x, O)X~). Here the following notations are used: Y '  = 9]i(b . . . . .  • 91"k'(b, Y " =  9~¢b 91rk"(b, 
y ,v , ,~ ,~-~ ~ . ( k )  . w , = ½ ( r ~ + l + ~ '  , ,  • ~ 1  ¢ /~  = l { ( r ) }  ~ Z ~ a = l  ra)  - - 4 .  
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2.4. Higher local quantum conserved current 

In analogy with the usual non-supersymmetric case, the first step to the est- 
ablishment of complete integrability should be to look for a HLQCC which would 
give rise to the non-trivial conservation law 

(Pl, n ) ± 3  }~ ~ , ,±3  = Log.,) , (20) 
in out 

where the sums run over the sets of in- and out-particle momenta for an arbitrary 
scattering process*. Eventual fulfilment of (20) would prevent multiparticle 
production in two-particle collisions and would imply factorization of the three- 
particle S-matrix to products of two-particle ones, i.e., eq. (20) would lead to the 
exact determination of the two-particle amplitudes [9]. The most general admissible 
supersymmetric structure for such an HLQCC reads 

S~/2 (x, 0) = N[F(~b)@34~@4~b + a((~)~l(~(~2~)3](x, 0) 

Y~/2 (x, 0) = mN[A~(~b)~s~b + A2(~)~1~14~ +A3(~)~21~3~ 

+ A4(&)~1q~(~21~)2](x, 0). (21) 

All functions in (21) (which are a priori arbitrary entire functions in &(x, 0)) are to 
be determined by the requirement that the ,corresponding Ward identity (WI) for 
the conservation of J~/2 (x, O) holds: 

~ 2 ( J 1 / 2  (X, O)X4~ ) -- ~ 1 ( J 2 / 2  (X, O)X4~ ) "= -i ~ [ ~  6(x -x,) 8 (0 - 0,)] 
l=1  

x(N[F(4~)@44~](x, O)f(~)-i ~ 6(x -xt) 6(0-0,) 
l = l  

x(N[G(4,)(2124,)3](x, 0)2~>+i ~ [9 3 a(x -x0  a (0 -  0t)] 
l = l  

x <N[F(q~)@3#~](x, 0)2~) 

+3i ~ [9, 8(x-x,) 8(0-O,)]<N[O(cb)@,4)(@210~)2](x, 0)2~).  (22) 
l=1  

One can easily convince himself that actually F(4~), G(4,) must be constants 
independent of 4~(x, 0). This is because terms containing @2cMF/8~, ~2cb6G/&b in 
~2J~/2 can never be compensated by terms arising in ~1J27/2. We choose F = 1 
(another choice would lead to a trivial change of normalization of the correspond- 
ing conserved charge). 

* L e t  us reca l l  t h a t  o n - m a s s - s h e l l  pe = m2/pn. B o t h  c o n s e r v a t i o n  laws  (20) a r e  c o n n e c t e d  

t h r o u g h  space  re f lec t ion .  
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Substituting (21) into (22) and using QEM (18) we obtain [V(0)=-½m02+ 
2ei(0)] 

( N [ - m A l ( C b ) ~ 6 0  + m (A 2(0) - 8 , 4 1 / 6 4 ) ~ 1 0 ~ 0  - (mA2(O) + mA 3(0) 

--62 V/ 60 2)~2 0~4 0 q- (2mA4(0) - m SA 3/ r~ 0 - 63 V/603)~x0~20~30 

- (mA4(0)-  G6 V/&b)(~0)B](x, O)X~) 

3 4 2 2 3 3 2 
= -m (N[@10@1{(s - 1)4} + @10~d(s - 1)4} 

+ G ( ~ 2 0 ) 3 { ( s 2 - 1 ) O } + 3 G ( ~ 2 0 ) 2 @ ~ O @ l { ( s a - 1 ) O } ] ( x ,  O)X,~). (23) 

The general graphical structure of the ZI for, e.g., the first anisotropic normal 
product on the r.h.s, of (23) is displayed in fig. 1. Bars on 0-lines denote 91 

__ ~o ( F ) + 2  ~o(F)  derivatives, the operators r e =  rp,~ - r p ,  s act on the corresponding (renor- 
realized) subgraphs F inside the boxes. 

Now observe that w([')= 3 for [" in fig. 1 and that, on the other hand, from (16) 

I" _ d2k 
¢e J Rr((p), s, (k); (0)) 11 

(2-~)~ 

=~]exp { E OafabOt,} [I [ sm6(Gl-Ob, ) ]  
A a,b a l , b l  

2 ~ 1 / _ ~ O A ( I ' ) + 2  ¢o X([ ')  
x II Ocpc.~ [I v~pa.et~p.. - t..~ ) 

c d 

where the last integral has clearly Lorentz weight WA([')= 3-½(Ic] + Idl). Apparently 
the Taylor operator acting on the latter will give a non-vanishing contribution if 
and only if 

WA(I') + 2 ~< WA(f') i.e., V([') + vext([ ") ~< 2 -]d].  (24) 

This is due to the peculiarity of two-dimensional Lorentz kinematics (the absence 
of invariant tensors of odd rank and the antidiagonal representation of the metric 
tensor g.,,~ in light-cone components). From (24) we conclude that the only super- 
graphs F giving rise to the corresponding ZI are those with V(I') = v e x t ( F ) =  1 (of 
course Idl-- O) and moreover, only the part 

O[-,A(t')+2] _ t t O A ( ] ~ ) + 2  - -  tOJA(l(') +1 
* p , S  p ,$  

of the operator cr contributes (see fig. 2). Exactly the same statement for the 
structure of the ZIs is valid in all other cases of interest, i.e., for the anisotropic 
normal products appearing in the WIs for all HLQCCs [see fig. 4] (cf. [15, 16] for 
the case of usual non-supersymmetric scalar models). The full list of graphs contri- 
buting to the ZI for the r.h.s, of (23) is depicted in fig. 2. 
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On account of the above facts eq. (23) reduces to the form 

(N[(-mA 1((~) + 2Co 83 V/ S(~ 3 + 4Gc l 85 V/ Sfb s)D6~b 

+ ( -m 8A 1/&~ + mA2(q~) + 3c2G84 V/&b4)Da&~& 

+ (-mA2 - mA3 + 82 V/Sq52 + (6Co + 9c2G) 84 V/8~ 4 

+ 12Gc186 V/Sg96)@~cb@4cb 

+ (2mA4(~) - m 6A3/S& - (1 - 6c3G) 83 V/&b 3 

+ 6c2G 65 V/Sfb 5)@lcb~zcb@30 

+ (-mA4(~b) + G8 V/Sfb + 6c3G 83 V/6fb 3 + (2Co + 9c2G) 85 V/80~ 5 

+4clG 87 V/&~ 7)(@~fb)3](x, O)Xe~) = 0. (25) 

Here the constants Ck, k = 0 . . . .  ,3, are the computable contributions of the box- 
subgraphs of fig. 2a. The contributions of the remaining box-subgraphs of fig. 2b 
are simply expressed in terms of Ck. Thus the WI (22) holds if and only if the 
coefficients in front of each independent Lorentz structure ~61~h . . . . .  (~2~b)3 on the 
1.h.s. of (25) vanish. This gives a set of 4 linear equations for Ai(~b), i = 1 . . . . .  4, 
plus the most important ordinary differential equation for V(~b): 

6c2G 85 V/ Sc~ 5 _ [1 - 3 G(c2 + 2c3)] 83 V/ 8~ 3 + G 8 V/ 8~ = 0.  (26) 

The general formal solution of (26) respecting space-reflection symmetry ~ ~ -~b 
reads: 

/ ~ 1  ~ . / ' ~ 2  ~ , 
V(~b) = -~11 cos/~lq) - ~  cos ~2~,  (27) 

G = - / 3 ~ [ 1  2 , --1 = -3/3i(c2+2c3)+6cz/3~] , j 1 ,2 ,  

/3~/32 = 1/6c2 > (47r) 2 , (28) 

i x ( 1  - x ) l n ( 1 / x )  dx'~ 
cz = (32¢r2)-1{ ~ + 2~¢r~/3- 2 ~ - - ~  -----~ j ,  

0 

where rhx, rh2 are arbitrary parameters with dimensions of mass. 
One possibility is to put rh2 = 0, rhl ~ 0,/31-=/3 arbitrary (or vice versa) thus 

obtaining the SSG model. Clearly, proceeding exactly in the same manner on clas- 
sical level we would get just the classical SSG model as the only possible solution 
because all terms containing Ck arise from purely quantum effects (i.e., they are due 
to the presence of "anomalous" anisotropic terms on the r.h.s, of (23)] and accord- 
ingly would be absent in the corresponding classical equations which are analogues 
of (25), (26). 

However there are arguments which lead us to consider as unreliable the more 
general double SSG solution (27), (28) (i.e., rh i ~ 0, .1" -- 1, 2). Eq. (28) shows that 
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both coupling constants/31,/32 cannot be simultaneously small and, more 
concretely, at least one of the latter will exceed the value 4~r which according to 
the discussion in sect. 3 is a critical one. At that point the quantum energy- 
momentum tensor of the SSG model has vanishing trace (i.e., scale invariance) [see 
(35)] and the total anomalous UV dimension of the cosine-perturbation 
dim(cos/34') =/32/4"h" [see (38)] becomes equal to 1, i.e., it ceases to be super- 
renormalizable. Therefore the procedure of this section for deriving HLQCCs 
cannot be expected to work in the non-renormalizable strong coupling regime (28). 

The result up to now can be summarized as follows. The SSG model with quan- 
tum effective (in the sense of Zimmermann [12]) lagrangian 

~/~'ett(X, 0 )=  1N11924,914, + m4,2]'(x, 0) 

-N[~-2(cos /3eS -1) + lm4, 2] (x, O) , (29) 

is the only one (at least in the weak coupling regime) in the class of scalar super- 
symmetric models (8) having an HLQCC. In (29) the prime on the first normal 
product indicates partially "soft" mass renormalization (13) and the quantity rh = 
mflm/#) contains (finite) mass counter-term additions accounting for the freedom 
in subtracting the divergent point-loops, t~ being an arbitrary subtraction point. The 
normalization of f(mhz) is such that m is precisely the physical mass (of the 
fundamental particles). 

To end this section let us write down the exact explicit expression for the first 
non-trivial HLQCC in the SSG model (cf. [16] for the corresponding HLQCC in 
the usual SG model) [G = G(/32) from (27)]: 

J~/2 (x, 0) = N[934,925 -/32(1 - 3B2(c2 + 2c3) + 6c2/34) 1914, (924,)3](X, 0) ; 

J~,2 (x, 0) = N[ ~ sin/34, ([-2COB z + 4/34c 1 a (/32)]95 4, 

+ [-/32 + 2Co/34 +/32G(B2)(3c2 + 3c2/32 - 4cl/34)]914, (9~4,)2)] (x, 0) 

+ N[rh cos/34, ([-2Co/32 +/32 G(/32)(3c2 + 4Cl/32)]914,944, 

+ [1 - 4Co/32- 8/32G(/3z)(3c2- ct/32)]9~z4,934,)](x, O). (30) 

The corresponding conserved charge Q3 generates a non-linear automorphism on 
the local field algebra [see the contact terms in (22)]: 

[03,  4, (X, 0)] = 2964, (x, 0) + 4/3211 -- 3/32(C2 + 2C3) + 6C2fl4] -1 

x (N[(gi24,)3](x, 0)-3N[914,9124,934,](x, 0)). (31) 
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3. Critical point in the SSG model 

Let us consider the quantum conserved spin-vector supercurrent of the SSG 
model. Classically the latter has the form: 

J3/2cl (x, 0) = - ~l(COS/3q~) . 

On quantum level the corresponding WI must be satisfied: 
L4, 

~2(j1/2 (x, O)X6)- @~(J~/2 (x, O)X6) = - i  ~ [6(x -x,) 6(0 - 0,)] 
1--1 

Lea 
x(@126(x, 0 )2 ~ )+ i  Y~ @,[6(x-x,) 6(O-O,)](@,O(x, 0)2~>. (32) 

l=l 

Substituting J1/2 (x, 0) = N[~l~b,~2~b](x, 0) into the 1.h.s. of (32) and using QEM 
(18) and the ZI for the arising "anomalous" term (fig. 3), 

m 2(N[@Z&{(s2 - 1)~b} + @l&@l{(S 2 - 1)~b}](x, O)X¢,) 

rh 
= ~---~(Y{~,(cos/34~)](x, O)X4,), (33) 

we obtain for the quantum "improved" spin-vector supercurrent the expression: 

J1/2 (x, 0) = N[~16~216] (x ,  0 ) ,  

/32 
J~/2 (x, O) = - (  1 

rh 
- - G ] ~ - ~ N [ ~ I ( C O S / 3 6 ) ] ( X ,  0) .  (34) 

Introducing in (34) the expansion of ~b(x, 0) in components (1) we find the 
"improved" quantum energy-momentum tensor (in light cone components): 

O~(x) = N[(O~) 2 -  i¢,2atOz](X), 

O..(x) = N[(0,~¢) 2 + i~lOn(/1](x), 

0~.(x) = G~(x)= G(x) 

[ /32\ FiE q 
- - / 1 - ~ ) ~ N  t~sin/3~ -~1¢2 cos/3~J (xt • (35t 

Similarly one can consider the dilatation WIs (i.e., the Callan-Symanzik equa- 
tions [32]) in the SSG model. Applying the standard method of differential-vertex 
operations [33] on the effective lagrangian [29] and using (33) we derive the 
following homogeneous equations: 

(lz 0/312 +R(/3 2, m/ # )m 3/3m)(X~)= O, 

R(/32, m/lz)=--[1-(1-/3 /4~r) ; (36) 
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[Iza/0/z +R(/32, m/lz)mUOm +R(/32, m/~z)[32/47r](N[cos /3~](x, O)X~)= O. 
(37) 

Eq. (36) [or equivalently eq. (35)] shows directly that/32 = 47r is a point of scale 
invariance. From (37) we read off the total anomalous UV dimension of the 
composite operator N[cos/3~](x, ~): 

2 

-~R(~ 2, m/~), (= 1 for t32 = 4~r). (38) dim (N[cos t~6]) 

Formulas (35)-(37) may be compared with their counterparts in the usual SG 
model [34]: 

] ff 1 2 2 2 1 2 2 m +No[~m u +~--T-(COS/3sGU--1) (X): ZsG(x)=~N2[(O,u) - m  u ](x) /SsG 

~ S G ~  SG SG ~, = 0~ = 0,~ = 2(1-/3~G/87r)rh2//3~G(N[cos/3s~U](X)- 1) ; 

[Iza/Olz + r(~G, m2/IzZ)(mO/am +/3~G/47r)](N[cos ~sGU](x)X,) = O, 
2 2 2 2 ~2 2 - 2  2 - 1  - 1  -/3sc/8¢r)m (/z Om /0# ) ] (39) r(~sG, m /Iz )=[1- (1  

It should be noted that eqs. (39) (derived in the BPHZ framework) are apparently 
true in the region 0 </32~ < 47r as it follows from the rigorous results of ref. [35]. 
On the other hand, the exact treatment of the SG model based on the quantum 
inverse scattering method (second of refs. [14]) shows that there is no coupling 
constant renormalization in the whole region 0 ~</32~ ~< 87r. Consequently, eqs. (39) 

4 ~ , ,2 also remain valid for 7r~psG ~<8~" with a possible change of the/32c dependence 
of the corresponding coefficient functions due to the arising non-leading short-dis- 
tance singularities [24]. This change depends on the particular choice of a modified 
renormalization presciption for the composite operator N[cos/3sGU](X). However, 
the facts that/3~G = 8~- is a critical point and that at this point dim(N[cos/3s~U]) = 
2 (strict renormalizability) which follow from eqs. (39) are indeed true, as it was 
rigorously proved in the second of refs. [14]. 

It is not clear to us whether there are non-leading short-distance singularities 
also in the SSG model f o r / ~ 2  in the vicinity of the critical point 47r (which would 
eventually require a modification of the renormalization procedure). Nevertheless 
the parallelism with the usual SG model indicates that the conclusions based on 
eqs. (36)-(38) about the critical character of the point/32 = 4~ are similarly trust- 
worthy. 

The critical point /3~ = 87r is identified in ref. [23] as the anti-ferromagnetic 
phase-transition point of the X Y Z  model. The analogous interpretation of the SSG 
critical point/32= 47r is at present not known. 

4. Infinite series of HLQCCs in the SSG model 

To construct the whole infinite series of HLQCCs J~k+3/2 (X, O) (k >>-2) accord- 
ing to the general algebraic normal product scheme [16, 20, 19] which would lead 
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to conservation laws generalizing(20): 

/ ~ ± ( 2 k + l )  ± ( 2 k + l )  
F_ tP,..) = }~ (pt,,) , 
in out 

(20') 

1 we note that J2k+3/2 (X, O) should have the following general form: 

k + l  
Jlk+3/2(X, O) ~. / 3 2 ( R - 1 )  ~ (k) (/32)N[g}~r]i((a)](x ' O) = Of{(r) } , 

R = I  {(r)} 

2k 
{(r)}-={q . . . . .  r2R}, l ~ < r l ~ < . . . ~ < r 2 R ,  ~ r~ = 2(2k +3) .  

c = l  

(40) 

The second sum on the r.h.s, of (40) runs over the set of all composite operators 
(k) Y((r)} (~b) which are linearly independent up to total @a derivatives, with Lorentz 

(k) weights and UV dimensions: W(~(.)}v(k) ) =  dim(Y((.)})= 2 k + ~ .  Let a(k) denote their 
number. All coefficients (k) (power series in/3 2) are to be determined from the ff{(r)} 

WIs: 

1 ~2(J2k +3/2 (X, O)X6) = ~1(J~k+3/2 (X, O)X4~ ) 

k /32A [ t.(k) (k) ] 
+ Y Y Z ~(,nJ r~{(i)}{(r)} 

A = I  {(i)} {(r)} 

x(N I Y}~i~,~sin /34)] (x, O)X6) 
k 

+ Z /32(~-~) Z r,.(k) (k~l 
I n  {(i)}{(r)}ff {(r)} J 

B = 1 {(/)} 

x (N["(k) - cos/36](x, O)X~) l{(/)}m 

k + l  ~ 2 ( R - 1 )  (k) 2R 
+i Z I $ Z Z (-1) %(l+Z;z'rb) a'{(r)} 

R = I  {(r)} c = 1  

L4, 

x Z [~°-~ a(x-x,) a(o-o,)] 
/=1  

x ( N [ ~ h ; b . . .  e . . .  N~'R~](X, 0 ) 2 ~ )  ; (41) 

{(i)}=-{ix . . . . .  i2a+1}, 1 ~< ia <~.. .  ~< i 2 A + l ,  
2 A + l  

ia = 2(2k + 1 ) ,  
a = l  

2B 
Y. jb = 2(2k + 1) ; 

b = l  
{ ( j ) } -  {/'1 . . . . .  j2B}, 1 ~< jl  ~<.. .  ~< j2~, (42) 
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j2k+3/2(X,O) = ~ /32A' ~ b{~))}(fl2)(N[ V(k,ffl'l{(p)}~ s in  fll])] (X, O)Xd)) 
A'=I  {(.o)} 

k 
+ ~ ~ 2 ( B ' - l )  2 (k) 2 (k) " b{(,~)} (/3)(N[ Y{(.)~m cos/3¢](x, O)X¢), 

B'=2 {(o-)} 

{ ( p ) } ~ { O l , . . . ,  p2A'+I} ,  1<~p1~<...<~P2A'+I, 
2A'+1 

X p~ =2(2k+½),  
a = l  

{(13")} -~" {O" 1 . . . . .  O"2B'}, 1 ~ 0" 1 ~ . . .  ~ O'2B' , 

2B' 
2 0b = 2(2k +~), 

b = l  

(k) 
by the requirement that the current J2g+3/2 (x, O) is conserved. That is, at(,)} 
should satisfy the following linear algebraic system of c(k) equations [c(k) is the 
number of allowed configurations {(i)}, {(])}, see below]: 

(43) 

H(k) y,, L(k) /~2~ (k) [o2\ (k) 2 
rq(.)}{(,)} tO )a{(,)} tp ) + h {(. )}{2k+ 1, 2k+2} ( / 3 )  ---~ 0 ,  

{(,)} 

{(. )} = {(i)}, {(/)}. (44) 

The sums in the non-total-divergence terms on the r.h.s, of (41) run over all possi- 
y(~) , ,, (k) ble sets of composite operators {c)} tO), Y{u)r (¢) which are linearly independent 

up to total @1 derivatives, with Lorentz weights and UV dimensions indicated in 
(42). The coefficient functions h(k) ,,~2, n{(.)II(r)ILp ) get contributions from two sources: the 
"classical" part of QEM (18) applied to the 1.h.s. of (41) and the ZIs for the cor- 
responding "anomalous" anisotropic normal products (see fig. 4). The particularly 
simple structure of the latter is due to the superrenormalizability (11') and to the 
peculiarity of two-dimensional Lorentz kinematics as already stated in subsect. 2.4. 
In eqs. (44) we have distinguished the terms corresponding to {(r)} = {2k + 1, 2k + 2} 

(k) and we have set a{2k+X.2k+2} = 1 (cf. (21) where F = 1). 
Elementary calculations give a(k)= c(k) only for k = 0, 1 (i.e., for the already 

constructed J~/2 (x, 0), J~/2 (x, 0)) and for k = 2 (in the case of the usual SG model 
a(k) = c(k) for ]~k+n(X), k = 0, 1, 2, 3 [16, 34]). The k = 2 HLQCC (40) has the 
following form: 

+/32a2(~e)(~z1¢)2~3¢~4& +/34a3(/32)@a¢(~¢)S](x, 0), (45) 

where all coefficients a~(/32), i = 1, 2, 3, are directly computable in terms of super- 
graphs of the type depicted in fig. 4 (the zeroth orders of a~(/32) coincide with the 
coefficients in the corresponding classical expression for J~/2 (x, 0)). 
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Unfortunately c(k)> a(k) for k/> 3, i.e., the system (44) becomes overdeter- 
mined and the question arises as to whether (44) is compatible. To this end we note 
that up to now we have not used any information from the existence of non-trivial 
higher non-linear symmetries generated by the already constructed HLQCCs (30), 
(45) [see eq. (31)]. However, because of the non-linearity it is too hard to extract 
directly any useful consequences and it is preferable to go over to asymptotic fields 
in order to linearize the action of the corresponding charges 03 and 05. 

Z 3~t~a ~t~ 

Z ' ,  z 

• • • - 1  r 1 A r2R "~l Fig. 5. A m p u t a t i o n  and going on-mass-she l l  for ( N [ ~ {  (~1 ~b. . .  c . . .  ~1  ~b)](pt, ~pt)X,). 
r - I  r I A r2R IPI The upper  block subgraph  represents  ( N [ ~  ( ~ i  ¢ # . . . c . . .  @i &)](Pt, e t )d) ( -Pt ,  ~) )  . The 

total p ropaga to r  ha_s the general  supersymmetr ic  form: ~ ( p ;  t#, $ ' ) =  [(1 + r , ( p 2 / m 2 ) ) x  
(m 2 _p2 _ i0)]-l(e ,O,'_ mS(t# - ~/)); Z --1 ~ 1 + ((1). 

It is well-known [36] that the asymptotic limit in terms of Green functions in 
momentum space means amputation of external propagators plus going on-mass- 
shell. Application of these operations on integrated (over x, 0) contact terms in the 
Wls (22), (41) gives the result (see fig. 5): 

l Amp ( X [ ~ c  -1 (~a~b..  ' d . . .  ~[=Rq~)](p,, Or)X6) Im.sh. 
= (pz.n)2k+lm(B(m 2) - A(m2))(outlin) ; 

(outlin)-= o~,(px, ~pl; • • • ; PLo.,, ~PLo.,I • • • ;PL,, ~0L,)in 

L~ A - 

: { f  l~=l d20l Hm[eff~tPt°t--lTlc~(~gl--Ol)](X4a) Amp c~uut[e°VPt'wv 

- m6 (0t,- ~pr)] } m.sh. ' (46) 

where the following general supersymmetric representation was used: 

<N[~  ~-1 ( ~ 7 6 . .  • e . . .  ~?~6)](P,  O),~(-p, ~))lP~ 

2k+l  2 fl0w =Pn [A(p )e +mB(p2)6(O-¢)], 

A(p2), B(p 2) being Lorentz invariant functions (1PI---one-particle irreducible). 
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Hereby the integrated WIs (41) reduce to the form: 

nt(i)I(fl2)(out[ d2x d:0 N (k) m . Y{(/)IG sin f l ~  (X, 0)[in) 
A=I  {(/)} 

k /~2(B 1) Lr(k) f + Y. Y (¢~2)<outl d2x d20 N[Y~f)}rfi cos fl¢](x, 0)tin> n {(i)} 
B = 1 {(/)} 

const(/32) ~ 2k+, = Pl., (out[in). (47) 
t=l 

~u(k) = 0), eqs. (47) give the conservation laws (20') and also: If (44) is compatible t-t(.)} 

(out[in) ~ p~.~+' •o  = 0. (48) 
l 1 

According to the above results, eq. (48) is certainly valid for k = 1, 2. Now we are 
ready to employ a supersymmetric generalization of the arguments of ref. [19] in 
order to show the compatibility of (44) for all k*. 

Let us assume for the time being that (44) may not be satisfied. Then we can 
pick up from (44) a quadratic subsystem of a(k) equations, solve it for (k) ~ 2 ,  a {(r)} t/5 ) 
(the corresponding determinant is of the form const+O(/32)) and substitute the 
result into the remaining c ( k ) - a ( k )  u(k) 11 {(.)r (/32) (which may not be zero). On 
account of (48) for k = 1 we have: 

[1.h.s. of (47)]' ~o pL •0  = 0.  (49) 
L t 

tAr(k) [o2~ Here the prime indicates that only terms with ~{(.)}, tp ) eventually survive. We 
s.hall see below that, actually, eqs. (49) are satisfied without the constraint on the 
external momenta and, moreover, they imply [cf. (40), (43)] 

kfl2A u(k) ( I v ( k )  /~ p ] ) 
~" E ~F/{(i)}' (f12) N i { ( i ) } ,%-s inf l¢  (x,O)X¢ 

A=I  {(i)}' 

k 
jr_ y~ ~I~j2(B 1) y~ r j (k)  ~{~,}' (~2)(N[ rl~,l}'a cos ~4](x, O)X~I 

B = 1 {(j)}' 

{ k+ l f l 2 (R  1) ^(k) 2 , (k) } 
= ~ 2  ~ 2 a{(,)I(fl , H)(N[YI(~}](x,  O)X~) 

R=I  {(r)} 

~_~ I {A  ~ ~2A' ~. ~}(k))}(~2H,)(N[v(k ) rnsinl30](x,O)X~ ) i{( o)}~" 
'=1 {(o)} 

k 
-I- ~ B 2(B'-1) ~. C(k) /.o2 , (k) - )] 

u{(,.)itp , H )(N[YI(,.)}m cos B¢](x, O)Xe~ (50) 
B'=2 {(or)} "J 

* Actually ref. [19] gives a rigorous proof for the case of the quantum SG and massive 
Thirring models of a "folklore" statement [L .D.  Faddeev, private communication (1976)] 
that in every completely integrable model the existence of a first HLQCC implies the exis- 
tence of an infinite number of HLQCCs.  
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where all coefficient functions *(k) ,"(k) ce{(~)}, 0{(.)} depend linearly on the coefficients of the 
/32 power-series expansion (k) 2 of H{0)}' (/3). From (50) we would deduce that the WI 

(k) K(k) 
(41) is satisfied for a modified current ]~k+3/: (X, 0), (40), (43), with a{(r)}, u{(.)} 
replaced by 

(k) i n 2 \ - -  *(k)  L (k )  { t 9 2 ~ , ~ . ( k )  [ o 2  
a'(<r)}tp )-i-ol{(r)i(B2, m' ) ,  v{(.))tto )Tt ,{( . )}tp  , H ' ) ,  

respectively. This should mean that a{~))}(/32)+ A(k) [c~2 . . . .  Cq(r)}tp , r* ) already constitute a 
solution to the whole overdetermined system (44) what contradicts the assumption 

(k) /~2", of the incompatibility of the latter and the fact that a{(,)}qJ ) are, by construction, 
LT(k) a solution to the corresponding quadratic subsystem. Therefore n{(.)}, (f12) = 0 [and 

consequently a{(~)}tp̂ (k) ~,~2, n .. . .  ) = 0], eq. (44) is compatible and hereby the construction 
of the corresponding current (40) is completed. 

The proof of (50) goes recursively order by order in fl :  perturbation theory. It is 
sufficient to verify (50) to lowest order. All further steps follow the pattern of ref. 
[19] and need not be reproduced here. 

The lowest (zeroth) orders of the matrix elements in (47) [and (49)] arise when 
L<~ = 2A + 2 or L<b = 2B respectively [in the notations of (42)]. They are of the 
form (without integration over x) 

L~, 

(out[ d2O N ,{(.)}tffrh//3) sin/75 JJ (0, 0)]in) (°) = m=V[ 1 (1 - m 6(40,)) 

N ( k )  L,b 

x Z  2 
s=O al , . . . ,a2s=l  

1 F_p{( )/ 1 2s--2 1 
1 " /  . . . . . . . . .  ~- J~ l  P{(')} al...£a2s 1...a2s-2 

2s (2s -  )t P . . . .  = (n P~* 

2s 1 ] 7 [ 2s p{(.)} {1+  p~/]  P-/'a - - f ,  P{()} + - ~, (as+a2,) ~<~. . . . . . . . .  ~ . . . . .  l...az~ t 
j = l  1=1 j 1 (i) 

(51) 

L~ L,~ 

+(2s+  1)(s+ 1) Z 
/1=1 12=1 

,p{(-)} ] ~ 2 1 (~ahPah m~pa.)" (Pt~-Pld . . . . . . . .  lxt~j + , 
h = l  

P{()} =0,  M ~ N ( k )  a l...a2M - -  

Here P{()} denote homogeneous polynomials in pt =- pt,, (the light-cone index r/ al...a2s 

is suppressed for brevity) of degree 2 k -  s, totally antisymmetric under permu- 
tations of the indices al . . . . .  a2s (with the momenta fixed) and symmetric under 
permutations of Pb . . . . . .  PbL~-2s where {bl . . . . .  bL,~-2s} is the complementary 
subset of {al . . . . .  a2s} to {1 . . . . .  L,~}. 2 ( N ( k ) -  1) is the maximal number of odd 
integers i~ or fb belonging to the corresponding sets {(i)}, {(/')}, (42), (with fixed 
2A +2 = 2B = L,~) appearing on the 1.h.s. of (51). To lowest order eq. (49), on 
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account of (51), implies: 

Pa~ a2s ~ ~ r r r ( k )  ](0)]9{(')}' 
.,. L/"/{( ' )}' .I --aa.. .a2s 

{(. )} ' ,2A+2=2B =La, 
= 0 .  (52) 

L~ L& 
Z p,= Y (pt) ~=0, 

1=1 l=1 
LS, 
2 p~#o 

1=1 

Applying a general theorem on the zeros of polynomials in several (complex) vari- 
ables (see appendix A of ref. [19]) to P ...... 2s, (52), we get for the latter the 
following representation: 

P~, 
...... l=1 . . . . . . .  ~, \l~1 

= p ,  . . . . . . . . .  ( 531  

where n (:~) . , ,~ ...... are homogeneous polynomials in Pt of degree 2 k - s  ~: 1, respec- 
tively, all other symmetry properties being the same as for Pa~ ...... . Moreover 

(-) 
(2 ...... 2, contain a factor ( I~p t ) ,  l = 1 . . . . .  L~.  To prove (50) to lowest order we 
note that the following general representations are valid [in the notations of (40), 
(43)]: 

N ( k )  L~ / 1 ~ pt{(r)} 2 s - 1  ] 

x • 2 1 2 s [ - -  ...... 2,-, + • p,{(r)}a,...a2,...a2, , j  (54a) 
s=O al,,..,a2~ = 1 i =1 (J) 

L a, 
nt{(r)} 1 ~ 2 1 

( ~ ahPa, = L ~  , + m~o .~), - ( 2 s + l )  )~ p t r .  ..... 2.1~ . .  2 R  • 
l = l  h = l  

( , O ) l i n } ( ° ) = m ( Y ~ l P , ]  [I ( 1 -  m~(~p/)) 

sin/3~ ' = 

2s--1 pv{ ( ' ) }  1 ] 

al . . ,a2s_l  --al . . .a2s. . .a2s_ 1 x Y~ Y" [ 2 s [  p~,  j=l (j) Pal j s=O al , . . , ,a2s=l  

L,t, 
~¢t{(-)} / ~-T 2 1 (~;~.p~ + - ( 2 s + l )  Y2 /-" ... . . . . .  tj _ m{o,,~) 

I = l  h = l  

{(.)} = {(o-)}, {(p)}, 2 A ' + 2 = 2 B ' = L ~ , .  (54b) 

Here P " "  {()} a,...a2,.l are homogeneous polynomials in p~ with the same properties as 
O~:~ Clearly, the correspondence between the expressions on the right-hand al...a2s, 

sides of (51), (54a, b) and the composite operators on the left-hand sides is one to 
one. Therefore we take matrix elements (to lowest order) of both sides of eqs. (50). 
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The resulting equations, on account of eqs. (51), (53), (54a, b) and of the linear 
independence of all Grassmann factors I-[h 2 (¢a~p,,. + rn¢~),  reduce to a set of 
algebraic equations for a determination of the unknown zeroth-order coefficients 
[ * (k )  1(07 rE(k) 1(0) /)(4:) . a{(r)}j , t'q(.~}J in terms of "~aa...a2~. 

1 [  t 2s-1  J L,t, 
- P  . . . . . . . . .  + ~ P'ol...cl2s.,,a2s_ 1 - -  (2s + 1/ 2 ptP'a . . . . .  2s l 

]=1 (it 1=1 

1 r 0 (-) 1 2. 2 1 
2 s ( 2 s -  ) P . . . . .  i=~ (j~ P~ 

2s--1 ] ~,~, [ 2s (--) ( q p l l ]  
- Y. (a/~a2~) -L,Q(~-~ '. . . . . .  + ~= O ..... ,...~2~ 1 

i=1 l = l  i 1 P a i / J  

L~ L b 
+ ( 2 s + l ) ( s + l )  Y~ Y (Ph (-~ -Pl2)O . . . . . .  2sill2 ; 

11=1 12=1 

1 F ,, 1 2s-I v 1 ] L+ 
2 s [ - e  . . . . . .  2s 'P~s  q- I=E1 P .... .  (;s...a2~ , ~ ,  J --(2S + 1) '=~E P~ ....... , 

(55a) 

=[the same r.h.s, as in (55a) with O( - )~  0 (+7] ; (55b) 

r~(k) l(O)p,{(n} 
P '  ~ ~. ~. {(r)}J al...a2s+l al...a2s+ 1 

{(r)},2R =L,~ 

P~'~ a: +~ - Y rE(k) 1(0)o,{(o)} rf(k) 1(0)o,,{(¢)} • -. s Lu{(o)}J ral . . .a2~+a + ~. LU{(cr)}J raa. . .a2~+l • 
{(O)},2A'+2=L4~ {(o-)},2B' = L,~ 

Straightforward (although somewhat lengthy) calculations give the following solu- 
tions of the (overdetermined!) systems (55a, b): 

p ,  = 1 [t'~(-) 1 
. . . . . . . . . .  2s + 1 ["al""a2~p . . . . .  

L,b 
2~ t3 ( )  1 ] - ( 2 s + 2  ) y~ ~-) - Y  Oal . . . a2s+l l  

j = l  . . . . . .  ~;; . . . . . . . .  PaiJ  l=1 (j) 

p , ,  _ 1 I-n(+) o(+) ] 
~1...a2,+, 2 s + l [ - , a l  ..... .  j=~l . . . . . . .  2(~ .. . . . . .  J 

- - ( 2 S + 2 )  Y ,-,(+7 Pt~,d a ~...a2s + d • 
l = l  

This completes the proof of eq. (50). 



E. R. Nissirnov / Conserved currents 395 

5. Conclusions 

Let us recapitulate the results of the above analysis. 
(a) The quantum SSG model is the only one (at least for weak coupling) in the 

class of two-dimensional scalar supersymmetric models with non-derivative self- 
interactions which is a completely integrable system (i.e., possessing an infinite 
number of HLQCCs). 

(b) For the classical SSG model the same result is valid without any restriction 
on the range of the coupling constant(s). 

(c) The value/32 = 4~" of the quantum SSG coupling constant is a point where 
the theory becomes (formally) scale invariant and turns from a superrenormalizable 
to a non-renormalizable regime. It is not yet known to what kind of critical 
phenomenon (if any) this situation corresponds. 

All features (a), (b), (c) have their counterparts in the usual SG model ([34], 
[10], [23], respectively). 

The problems considered in sect. 2 were discussed for the first time in ref. [37] 
where the corresponding results were briefly reported. 

The author has much benefited by his stay with Prof. L. D. Faddeev's group in 
the Steklov Mathematical Institute, Leningrad. He is also indebted to Prof. I. T. 
Todorov for his interest in this work and for useful comments. 

Note added 
After submission of the present paper the author became acquainted with the 

preprint [38] which partially covers the material of sect. 2. 
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